Spectroscopically distinct sites present in methyltrioxorhenium grafted onto silica-alumina, and their abilities to initiate olefin metathesis.
نویسندگان
چکیده
Deposition of CH3ReO3 onto the surface of dehydrated, amorphous silica-alumina generates a highly active, supported catalyst for the metathesis of olefins. However, silica-alumina with a high (10 wt %) Re loading is no more active than silica-alumina with low (1 wt %) loading, while CH3ReO3 on silica is completely inactive. Catalysts prepared by grafting CH3ReO3 on silica-alumina contain two types of spectroscopically distinct sites. The more strongly bound sites are responsible for olefin metathesis activity and are formed preferentially at low Re loadings (< or =1 wt %). They are created by two Lewis acid/base interactions: (1) the coordination of an oxo ligand to an Al center of the support and (2) interaction of one of the adjacent bridging oxygens (AlOSi) with the Re center. At higher Re loadings (1-10 wt %), CH3ReO3 also interacts with surface silanols by H-bonding. This gives rise to highly mobile sites, most of which can be observed by 13C solid-state NMR even without magic-angle spinning. Their formation can be prevented by capping the surface hydroxyl groups with hexamethyldisilazane prior to grafting CH3ReO3, resulting in a metathesis catalyst that is more selective, more robust, and more efficient in terms of Re use.
منابع مشابه
Investigation of Lewis Acidity in Silica-Alumina and Its Importance to Rhenium-based Metathesis Catalysts
Introduction We employ a combined computational-experimental approach to probe the Lewis acidity of silica-alumina, and extend this study to the effect of Lewis acidity on the activation and activity of a supported methyltrioxorhenium (MTO) metathesis catalyst. Despite the widespread use of amorphous silica-alumina as a catalyst and a catalyst support, the structures of its Lewis acid sites rem...
متن کاملWell-defined silica-supported olefin metathesis catalysts.
Two triethoxysilyl-functionalized N-heterocyclic carbene ligands have been synthesized and used to prepare the corresponding second-generation ruthenium olefin metathesis catalysts. These complexes were then grafted onto silica gel, and the resulting materials were efficient heterogeneous catalysts for a number of metathesis reactions. The solid-supported catalysts were shown to be recyclable o...
متن کاملNature of WOx Sites on SiO2 and Their Molecular Structure− Reactivity/Selectivity Relationships for Propylene Metathesis
Supported WOx/SiO2 catalysts were investigated for propylene metathesis as a function of tungsten oxide loading and temperature. The catalysts were synthesized by incipient-wetness impregnation of an aqueous ammonium metatungstate solution onto the silica support and calcined at elevated temperatures to form the supported tungsten oxide phase. In situ Raman spectroscopy under dehydrated conditi...
متن کاملProtonation of Propene on Silica-Grafted Hydroxylated Molybdenum and Tungsten Oxide Metathesis Catalysts: A DFT Study
Theoretical assessment of the protonation reaction in the activation of propene on hydroxylated Mo(VI) and W(VI) metathesis catalysts is presented in this paper using the density functional theory calculations and five support clusters varying from simple SiO4H3 clusters to a large Si4O13H9 cluster. The bond distances and thermochemical...
متن کاملRole of Alumina Basicity in CO2 Uptake in 3-Aminopropylsilyl-Grafted Alumina Adsorbents.
Oxide-supported amine materials are widely known to be effective CO2 sorbents under simulated flue-gas and direct-air-capture conditions. Most work has focused on amine species loaded onto porous silica supports, though potential stability advantages may be offered through the use of porous alumina supports. Unlike silica materials, which are comparably inert, porous alumina materials can be tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 129 28 شماره
صفحات -
تاریخ انتشار 2007